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ABSTRACT

In order to determine the validity and accuracy of Radar Cross
Section (RCS) predictions for thin wires, the predictions of the closed-form
expressions developed by Chu, Tai, Van Vleck, et al., and Ufimtsev have-
been compared with carefully measured backscattered RCS vs angle of
incidence for various length thin, long, cylindrical conductors. Further,
the prediction of an open-form numerical analysis based on the Source _
Distribution Technique and programmed by M. B. Associates as the BRACT
computer program was also compared with the experimental data.

It was found that (1) the BRACT computer results agree with experiment

so well (within +1 dB for all reliable data) that it may be used with great con-
fidence for any length thin wires and can be used as reference data for com-
paring with the predictions of the closed-form solutions; (2) the results of
Chu are not accurate except at broadside incidence; (3) the results of Tai
compare favorably with data up to k{ values of about 17 if corrections are
made to the approximate formulas to correct for broadside incidence; (4) the
results of Ufimtéev compare well with experiment for all kf values considered;
and (5) the results of Van Vleck, et al., appear to be very accurate for all k¢
values considered except for near end-on incidence. In a separate report to
be published soon one of the authors of this report (M. Tavis) has shown that
this deficiency is due to numerical approximations in the theoretical

expressions.
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I. INTRODUCTION

Interest in the backscattered Radar Cross Section (RCS) of thin,
long, cylindrical conductors has led several organizations including The
Aerospace Corporation to obtain RCS measurements vs angle of incidence
for various length thin, long, conducting wires. |

Having assembled such carefully measured RCS data, it was logical to
use the more commonly known closed-form theoretical expressions published
in the literature on this subject for comparison purposes. The relatively
simple analytical expressions used are those derived by Chu (unpublished

but discussed by Van Vleck, et al., in Ref. 1, and used in Ref. 2), by

- Van Vleck, et al, (Ref. 1), and Tai (Ref. 3),* and the known expressions

derived by Ufimtsev in relatively recent publications (Refs. 4 and 5).

The purpose of this technical report is twofold. The first purpose is
to compare the predictions from the four theoretical expressions with the data
over a wide range of length-to-wavelength ratios in order to establish which
theoretical expression possesses general validity for predicting all the experi—'
mental data considered and to within what accuracy. ‘The second purpose
is to compare with the data the RCS predictions obtained by using a computer
program specifically designed to yield the RCS of thin, not necessarily

straight, conducting wires.

ale

"Equations (21) and (22) given by Tai are expressions averaged over the
polarization angle. In order to recover the expression before the averaging
process, multiply Egs. (21) and (22) of Tai by 8/3 cos4¥, Moreover, there
is a misplaced bracket in the logarithmic term of these equations. For this
reason, the corrected forms will be given in the text of this report.
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II. WIRE DIMENSIONS AND RCS DATA N

In May 1968, an RCS experiment on thin wire configurations was
conducted at the Radar Target Scatter (RATSCAT) Division at Holloman Air
Force Base, New Mexico. This experiment was directed by J. W, Curtis
and L. Martinez of The Aerospace Corporation. A thin, straight wire was
one of the configurations measured under this effort. The radar frequency
chosen for the straight wire experiment was 450 MHz (radar wave-
length X\ = 2/3 m). Because of practical limitations,‘ yet desiring to
achieve a large. value of k£ (where k£ = 2wf/X and 2 = L = total length of
wire), a copper wire with a total length of 2. 48 m was chosen, i.e., kf = 11.7.
4 m (15. 8 mil) or ka = 2ma/A = 3. 78

The radius of the wire was '"a" = 4 X 10~
. The linearly polarized electric field vector of the radar was chosen

X 107>
in the plane forrhed by k and I so that cos y =1, The wire located in the far
field of the radar was mounted on a very low RCS support (styrofoam holder)
such that -40 dbsm cross section could be measured with a signal-to-noise
ratio of about 10 dB. The calibration measurements performed on known
size spheres were accurate to within 1 dB of the predicted RCS. During the
RCS vs angle measurement, the angular accuracy was about + 1 deg.
Subsequently, the measured RCS values of more pieces of differing length
wires became é.vailable, and the seven almost randomly selected data for
presentation in this report are a good representation of reliable RCS
measurements over a wide range of kf values, where the radius "a' of each
wire is such that ka «<1. |
The measured backscattered RCS data in decibels relative to a meter
square (dbsm) vs aspect angle (90 deg at broadside) for the differing length,

thin, metallic straight wires are shown in Figs. 1 through 7. * The accuracy

of the RCS measurements is within about 3 dB at the peaks and degrades at the

.

"In F1g 7, the éngle @ is zero at broadside and 90 deg at grazing incidence.



nulls of the RCS patterns based on calibrating spheres. The errors in the

Avco data (Fig. 6) are larger. The angular accuracy is about *1 deg. The
pertinent parameters of each experifnent are given in Table 1.
Table 1. Experiment Parameters
Fig, : Wavelength, Polarization® T :
No.| Source of Data m Transmit| Receive’ ka 194
1 | Lincoln Lab. 0.227 Circular | Circular | 4.2 X 107> | 4.44
(Ref. 6), per-
formed by
Sigma Inc., Fla.
2 Lincoln Lab 0.227 Circular |Circular [ 4.2 X 10 ~{ 9.2
: (Ref. 6)
3 SAMSO/ 0.666 Linear Linear . L78X10° 7| 11,7
Aerospace
Corp., per-
formed at
| RATSCAT
4 | Lincoln Labb 0.227 Circular |Circular .2 X 10" 13
| (Ref. 6) ’ o
5 Univ. Set at Linear Linear .95X10 7|17
Michigan 1.00 '
6 Avco® 0. 69 Linear Linear .1 X 10_3 34.8
7 M. B. Associ- Set at Linear Linear 22 45,7
ates, per- 1.00
formed at
Sigma Inc. ,
Fla.
@Circular Transmit and Receive RCS will be 6 dB below that of Linear -
Transmit and Receive. .
bLincoln Labs data appears to be somewhat in error up to the first null.
‘“Avco data is several decibels in error due to experi'ment-al difficulties.




III. THEORETICAL EXPRESSIONS AND THE SDT COMPUTER PROGRAM

Tai's expression(Ref. 3, Eq. 21) for the backscattered RCS from long
thin wires with kg >1 and ka <1 when the wire is nonresonant (hamely kg is
not equal to 221, n=1,2,3,...)1s _

o _ 1 P(¥)

RO

)\2 om
1 1+ cos®e
X €os sin(2kfcosB)
.4 2cos6
sin "6

(1)

1 - cos(2kl)cos(2klcosb) 2 )
B sin2k?

The expression derived by Chu (unpublished) for the same conditions and

.referenced by Van Vleck, et al. (Ref. 1), also given in Ref. 2, is

o _ 1 P(y) iZe[sin(ZchosE)):I2
5" F sin

N O ”

where
o = radar cross section
a = radius of wire
2f = total length of wire
nx = vnatural logarithm of x

nY = 0.5772 or Y = 1,78

kzz_"
A



6 = aspect angle (6 = 90 deg at broadside incidence)

Y = polarization angle, defined as the acute angle between the __
incident electric field vector and the plane defined by K and /

P(¥) = cos li for the case of transmitted linearly polarized waves and
received in the same direction; for random polarization,
2T
P = _ZLTT. cos Hyay = %
_ cos' ¥ N . . .
P(y) = —— — transmit linear, receive right or left circular
P) = L transmit right or left circular, receive right or left circular

4

To test the validity of the theoretical expressions for thin, long wires
of infinite conductivity, the parameters of the copper wire used at the RATSCAT

Center were inserted in the expressions Eqs. (1) and (2), with P(y) = 1, and the
predicted cross sections (@) vs § were obtained. The predictions from

Tai's expression are plotted in Fig. 8, where the experimental data are also
shown for comparison. The predictions obtained from Chu's expression,
together with the same data, are plotted in Fig. 9. In both figures, the ordmate
is the absolute backscattered cross section in dbsm vs the aspect angle with
respect to the wire.

The results of Figs. 8 and 9 indicate that for k& = 11.7, Tai's expression
predicts the correct number of lobes 11;1 the RCS vs angle pattern and, within
a few decibels and deg‘rees in position, the magnitude of the predicted RCS
agrees with the data except near the nulls. Chu's expression yields results
that agree very well with the data only near broadside (aspect angle near
90 deg), but leads to very erroneous results at all other angles. Chu's
expression for all the other wires discussed in this report led to similar

erroneous results, except at broadside incidence.



A further test of Tai's and Chu's expressions is obtained by using the
parameters of F1g 1 and Table 1. The predicted values from Tai's ‘
expression are shown in Fig. 10 and those of Chu's in Fig. 11. In both
figures, the data have also been plotted for comparison purposes. It is cllear"
that Chu's expression for broadside is the more accurate one.

A comparison of Eqs. (1) and (2) for the aspect angle 6 = 90 deg reveals

that Tai's expression at broadside reduces to:

o _ 1 P(Y) kg . L= cos2kl 2 (3)
A Yka 2 \"" 7 sin2k/
) +[en(52)]
and Chu's expr\ession reduces to: '
o _ 1 P(}) 2 '
5 = T 3 (x£) (4)

S [eee]

Equations (3) and (4) at 6 = 90 deg are identical except for the second
term in brackets in Tai's expression. Indeed, it will be shown below that the
correct asymptotic (k£ > 1) equation that one obtains from Tai's expression at
6 = 90 deg, i.e._, broadside, is Eq. (4) and not Eq. (3) as published.

A, A REVIEW OF TAI'S THEORETICAL EXPRESSIONS AND COMPARISON
OF PREDICTIONS WITH DATA

According to Ref. 3, Eq. (26), when a linearly polarized wave with the
electric field in the plane of incidence is incident broadside (8 = 90 deg) upon a

thin, metallic wire, of infinite conductivity, the radar cross section o is

given by
2 2
o _ 1 50
Z T wv ()
A o]
7



where
g, © 2(sinx - xéosx)
.2 ..
Y, = 2cos x(-1 + cos2x - jsin2x)
-+ j2cosx(xcosx - sinx)(£n4 + Q- ZL(Zx))
x = kf = —Z%B, 24 = total length of wire
Q = anz—z-
a
a = radius of wire
v .
1 - e % — ' .
L(y) = 5 — du= Ci(y) + jSi(y), for any variable y
y o .
Cin(y) = / 5% du = ¢n(Yy) - Ci(y)
(o) .
Y = 1.78
y
. _ sinu
Si(y) = [ ~ d

Ci(y) = S—lfl for y >1

Si(y) = -%- cc;sy for y > 1

Therefore,

L(y) = In(Yy) + jg—for y > 1



T
2 ST
definitions, and neglecting higher order terms, one finds that

When x > 1 and x # n5 so that xcosx > sinx, inserting from the above"

[oJN V]

4xzcos 2x

~
=~

. L 2
o Zcoszx(-i + cos2x - jsin2x) + ijcos.Zx(_ﬂn4 + Q - 2fn2yx) + 2mxXcos x

-<I(TQ

Since
2 (Yké)
fn4 + ZQnZYx ZgnYka ;Bn >
then
gZ
° ~ 2% Vi for x > 1°
Yo - J[an(———z—a)]
and
2 .
2 . 2
1 'k f
T2 =) — S Var . ()

118

CT T L) ) [l
' _ 2 2 2 \ 2

Equation (6), derived from Tai'_s own general expression, is identical,
at 8 = 90 deg, to Chu's expression, Eiq. (4). At this point it was obvious that
the complete general expressions of Tai's .derivation should be used rather
than the asymptotic expression given by Tai. However, simplicity of his long’
wire expression is appealing from a practical point of view, since the general
expi'essions are rather lengthly. In order to preserve the simple expre ssion
of Tai (Ref. 3, .Eq. 21) a simple arbitrary function f(8) is chosen that modifies
the second _téi'm in brackets of Tai‘s Eq. (1), anc.iAmodifies it only near broad-

side so that, for kg >1, it properly reduces to Eq. (4) or (6). That is

. 2
fle) = 1 - (Sln2(1<221<c:£§s()€;se)) sin0, for ki > 1,



where f(0) = 1 for all values of 6 except for 6—90 dég, wheré f(6)— 0 near
broadside. The new expression for the RCS of a non-resonant thin, long,

metallic wire may be written as

1 P(y)

- ,
2 T w2 . 2
A + [Qn<Ykaésm6>]

2 2
% 1 [1 + cos esin(Zkﬂcose) - £(8) 1- cos(ZkE)cos(Zchose)] (7)

sin49 2cosB sin2k¥

Predictions of the RCS based on Tai's modified expression, Eq (7)),
for the wires described in Table 1, are shown in Figs. 12 through 17 together
with the appropriate data. As can be seen, the modified Tai's expression
for the RCS of thin, long, nonresonant, metallic wires pr"edicts the RCS vs
aspect angle for 4.5<kf< 17 within a few decibel over the entire aspect angle
variation, except near the nulls. However, for kfz45.7, the predictions
vary by more than 10 dB from the measurements. Sinée the modified Tai's
expressions are simple, they may be used for quick and fairly accurate
estimates for the k{ values given above.

B. PREDICTIONS BASED ON VAN VLECK'S, ET AL., EXPRESSION AND
COMPARISON WITH DATA

The expression der_ived by the above authors (Ref. 1) was one of the
earliest in this field. Even though S. Hong (Ref. 4) claims ‘Van Vleck's study
to only be applicable to short wires, our experience has beén that ,Vah Vleck's
expressions are of much greéter general validity than give'n'.cr'edit. This can
be seen in Figs. 18 through 23, which are the'predictioﬁsobtaihed when the

parameters of the wires of Table 1 were used for the predictions. The

10

. . -




cross section expression of Van Vleck, et al. (Ref. 1), is reproduced
here for easy reference. Note that these are Van Vleck's approximate

formulas.

o = 47P(®) ‘ (F" + F'") sin 2qf + 2(G' + jG") cos(ql) |sin(q + B)2
q | q+hb

2

. sin(q - B)Q] + 2(H' + jH") sin(qf) [ sin(q + $)£ - sin(q - p !
q-B q+p q-p

P(®) = as given in the text

Ql
Ft = — % =
(Q')Z +TT?
F'' o= - i m
()% + 2
. |
. Q! = Zlogeﬁ- 1.154
Y (L) m 2G"
2G' = -5 5
sipny + 2%y 2 %
Z(p2) |
2G" =
Wipo) + 22 (p0)
SHI = - y(pl-n/2) _m2H"
Wipe-r/2) + z%(pe-nj2) % %
2 - Z(se-n/z;
WA (BL-1/2) +Z%(pl-/2)
Y (y) = - (' ~-A)Xcosy + (n/4) siny

Z(y) = (1/2) [loge (4[32) + 0. 577] siny - (v/4) cos y

,11‘

(8)



& = -(1/2)[10g_ (BD)] +0.712
q =BcosbH
B. = 2 w/\
N = radar wavelength
22 = total length of wire element
"a = radius of wire element
6 = angle befween line—of-sight from the radar to the wire element

and the axis of the wire element

io= Ve

As can be seen from Figs. 18 through 23, the expressions used by Van

Vleck, et al., when compared with the data, give good RCS results for all the

cases shown except for end-on incidence. The difference between data and
predictions in all cases is within 4 dB at the peaks and within 2 to 3 deg in
look angle. The accuracy in the nulls is not quite as good. Tai and Van Vleck

are about equally as accurate at the lower k{ values.

C. UFIMTSEV'S SOLUTION

The RCS of long, thin wires as given by Ufimtsev (Ref. 5) is taken
from Ref. 4 and given below. The predictions based on these equations are

compared with data in Figs. 24 through 29.
1. THE CASE FOR 6 # /2

4 2
e (8,4)/2% = 4 cos™%.]5(6)]

- T
m sin’0 -sin2(26) len(—ZI———) ‘

Yka sin®©

12




where

S(0) = - sin4(_—62—)- Qn[ 1 ]
Y

ka sinZ(G/Z)

ikL2 cos® 4(6 i
+ e ecos \=) In|l————=
2 2(6
Yka cos 2

+ eikL(1 t cos® )aZ . Sin4(%) .q{. Qn[———_i—_e-:l
Yka sin (—2)

- Cos4(_g—> Wy dn [Yka .icos (—g—)]

4 c0s6 4 (wia)' [eikLz(%r)z + oikL2(1 + cos 0)(y 12

o2 eikL(3 +cose).4’ P P ]
- +

Ykza2
¢ = im - In(Y qq)
= Zkiq e KL
tn (L B )e T
K \k ka

. 2
q, = (k—zal(lchose)

E(y) = [ cost gy, i/ ————SItn tat - in/2
oo}

t
(e}

L 2. i2KL

13



a = radius of the wire
L. = total length of the wire
6 = the angle between the propagation vector and the wire
¢ = the angle between the E vector and the wire -
2. THE CASE FOR 6 = w/2 -
4
2 ~
e (6 =m/2,5)N° = goi_‘i’- % |82
where
. -2
3 - 134 L ) E(ZkZL) LA - é/z
2A’ A
L2 [E Bn(i\/_2>] T ikl
A2Ll2 Yka/l ¥ €
2(H)° i i2kL i3kL
. ¥ "2xgn(ﬁ') (KL p )
DA a
B 2i
A= Bn(Yka)

As can be seen from Figs. 24 through 29, Ufimtsev's results compare
very well with data for all kf values considered. However, the expressions
are complicated and the modified Tai may be used easily for the smaller k¢
values. The location of the peaks and valleys compares well with the data
and the accuracy of the predictions is comparable to that predicted by
Van Vleck.

14



D. SDI TECHNIQUE

The SDI technique has been used by M. B. Associates to develop a
computer program designated as BRACT (Ref. 7). The BRACT program uses
the numerical solution of the thin wire integral equation to solve the complete
electromagnetic scattering problem for arbitrary wire structures. For these
arbitrary scatterers, the program setsiup the structure matrix relating the
incident field to the resulting induced currents and calculates the induced cur-
rent distribution on the scatterer. The currents thus obtained are used to
calculate the scattered fields. BRACT is designed for execution on the
Control Data Computing System and is coded in FORTRAN IV as released under
the SCOPE version 3. 1.2 operating system.

This program was used to calculate the RCS of long wires, using the data
presented in Table 1. The results are compared with experiment in Figs. 30
through 36. As can be seen, the calculated values for all values of k? are
nearly on top of the data except for the two cases, kf = 13 and k£ = 34.8
where the differences are about 4 dB. It is known that the data for kg = 34.8
is in error, and it is believed that the data for k¢ = 13 is also in error, siﬁce
every theoretical technique applied gives more error for these two cases than
all other cases.. BRACT was also used to calculate the RCS of a wire with
kg = 157, X\ = 2 ¢cm, and a radius of 1,52 X 10-4m (&K\). The results are
presented in Fig. 37. , .

In order to prove the accuracy of the Ufimtsev and Van Vleck closed-
form expressions for very long wires, the RCS of the long wire kf = 157
was calculated using the expressions of these authors and the results are
given in Fig. 38. The results obtained by BRACT and the results obtained
by the closed-form expressions are nearly identical, being about 1 dB dif-
ferent at the peaks and following the dips very closely, although Van Vleck's

expression‘predicts much lower null values than the other two cases.
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IV. CONCLUSIONS

-~ The comparison of the results of the c-alculgtiphé w'igh _rlileasj.ur'elé _béék-
scattered data from various:length, thin,, cylindrical écindﬁqtc;rs shows t.hait',» ;
of the four analytical expressions, Chu's expressién yieldé fa;lr RCS égr‘ee'—“
ment with the data only at broadside incidence. The modified Tai's pre-
dictions at all angles are within a few decibels of the RCS data for wires of
4.5 < kf <17, where kf = 2_1):2’ 2f = total length of wire, and A = wavelength.
For larger values of kf, Tai's expression yiélds predicted values which differ
from the data by as much as 10 dB. Van Vleck's expressions lead to predic-
tions that are within a few decibels of the RCS data at all angles greater than
20 deg from end-on, and for all thin wires tested, namely kf > 4.5, Even

end-on, the predictions can be used as an estimate if it is noted that the RCS

: should approach zero as 6—~0, The predictions from Ufimtsev's analytical

expression yield results that are no more accurate than those of Van Vleck
(except near end-on incidence) and in the nulls. Except for end-on incidence,
Van Vleck's approximate expressions are as good or better than all others if
one is willing to let the RCS approach zero at end-on by using the shape of A
the last lobe in the pattern as a guide. In Ref. 8 it is shown that the deficiency
in Van Vleck's theoretical predictions at end-on are associated with approxi-
mations as published, and when the general expressions given by Van Vleck
are used, the deficiency of the theoretical predictions at end-on disappear..

In appendix A these expressions are given and in Fig. 39 a comparison of

the calculation using these expressions and Eq. (8) is shown for kg = 13,

The BRACT cémputer program, whose results are most rigorous,
agrees with the data within 1 dB and *1 deg. The analytical forms take about
one minute of computer time to yield results for a given wire for all angles of
incidence, while the SDI technique, competitive with the time usedlby the
programmed analytical forms, takes a little longer, depending on the length
of wire. Moreover, the general usefulness of BRACT becomes evident

should one bend or distort the wire under consideration. Then, as expected,

17



the analtyical expressions for the RCS do not apply to the new configuration,
whereas the BRACT computer program is flexible enough so that for the
most complicated configuration of a distorted thin, metallic wire, accurate

results for the RCS may be obtained within a few minutes.
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Figure 1. Measured Backscattered RCS for Thin, Metallic
Straight Wires, k¢ = 4.44, Circular Polarization
(90 deg corresponds to broadside) .

21



S T I
DIPOLE LENGTH 66.3 cm

FREQUENCY | 1320 r\lAHz'
N K/ = 9.2
-10 —ka = 4.2 x 1073~
A =0.22Tm

IRIVAR

RCS, dbsm
w
) o
—

S

0 30 60 .90
ASPECT ANGLE, deg
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Figure 3. Measured Backscattered RCS for Thin, Metallic
Striaght Wires, k¢ = 11.7, Linear Polarization
(90 deg corresponds to broadside)
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Figure 6. Measured Backscattered RCS for Thiﬁ, Metallic
Straight Wires, kf = 34.8, Linear Polarization
(90 deg corresponds to broadside)
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APPENDIX A

The expressions for monostatic cross section from a generalized

Van Vleck (Ref. 8) theory would be

2 4
o(0) = )L_E%__‘R EE,

sin (B - q)¢

1 - cos B

KK
E < Sin 2qy _(A,{_B)Ei_n_(ﬁ_*”_L)f__(A_B)
1 cos O 1 +cos b
q=f cos 9
2
P=x
A = 2K cos qf - (Delq!Z + Ge—qu)
2L cos B2 - (EeP? 4 Fe TP
5 . 2iK sin q¢ _ (pela! . ge-iaf)
2iL sin B - (Eel‘”Z - Fe tPY)
F = Cin 244
E = F - Cin 487 - iSi4p4
G =F - Cin2(B - q)t - iSi2(B - q)4
D=F - Cin 2(8 + q)f - iSi2(B + q)2

(A-1)

(A-2)
(A-3)

(A-4)

(A-5)

(A-6)
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(AZ9)

(A-10)
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4031
- i [Si4ﬁ£v.+(cos 4Byg - 1)] SR

401

K = Zlogz (%)+ 2 log 2+%-Cin 2(B +q)e

sin 2(B + q) ¢ sin 2(B - q)¢

1

SCm AP - - T TR - 9
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length of wire

radius of wire

angle between the propagation vector and the wire

angle between the E vector and the plane formed by the

wire and the propagation vector.
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